Pengukuran Fisika


Untuk mencapai suatu tujuan tertentu di dalam fisika, kita biasanya melakukan pengamatan yang disertai dengan pengukuran. Pengamatan suatu gejala secara umum tidak lengkap apabila tidak ada data yang didapat dari hasil pengukuran. Lord Kelvin, seorang ahli fisika berkata, bila kita dapat mengukur yang sedang kita bicarakan dan menyatakannya dengan angka-angka, berarti kita mengetahui apa yang sedang kita bicarakan itu. 
Apa yang Anda lakukan sewaktu melakukan pengukuran? Misalnya anda mengukur panjang meja belajar dengan menggunakan jengkal, dan mendapatkan bahwa panjang meja adalah 7 jengkal. Dalam pengukuran di atas Anda telah mengambil jengkal sebagai satuan panjang. Kenyataan dalam kehidupan sehari-hari, kita sering melakukan pengukuran terhadap besaran tertentu menggunakan alat ukur yang telah ditetapkan. Misalnya, kita menggunakan mistar untuk mengukur panjang. 
Pengukuran sebenarnya merupakan proses pembandingan nilai besaran yang belum diketahui dengan nilai standar yang sudah ditetapkan.
ALAT UKUR BESARAN
Alat Ukur Besaran Pokok
Besaran Pokok
Alat Ukur
Panjang
Mistar, Jangka sorong, mikrometer sekrup
Massa
Neraca (timbangan)
Waktu
Stop Watch
Suhu
Termometer
Kuat Arus
Amperemete
Jumlah molekul
Tidak diukur secara langsung *
Intensitas Cahaya
Light meter
 * Jumlah zat tidak diukur secara langsung seperti anda mengukur panjang dengan mistar. Untuk mengetahui jumlah zat, terlebih dahulu diukur massa zat tersebut. selengkapnya dapat anda pelajari pada bidang studi Kimia.
Mistar : untuk mengukur suatu panjang benda mempunyai batas ketelitian 0,5 mm.
Jangka sorong : untuk mengukur suatu panjang benda mempunyai batas ketelitian 0,1 mm.
Mikrometer : untuk mengukur suatu panjang benda mempunyai batas ketelitian 0,01 mm. 
Neraca : untuk mengukur massa suatu benda.
Stop Watch : untuk mengukur waktu mempunyai batas ketelitian 0,01 detik.
Termometer : untuk mengukur suhu.
 1.        SATUAN
Untuk mencapai suatu tujuan tertentu di dalam fisika, kita biasanya melakukan pengamatan yang disertai dengan pengukuran. Pengamatan suatu gejala secara umum tidak lengkap apabila tidak disertai data kuantitatif yang didapat dari hasil pengukuran. Lord Kelvin, seorang ahli fisika berkata, bila kita dapat mengukur yang sedang kita bicarakan dan menyatakannya dengan angka-angka, berarti kita mengetahui apa yang sedang kita bicarakan itu.
Catatan :
Metrik atau sistem metrik tuh sistem pengukuran internasional yang menggunakan bilangan desimal. Standar sistem metric tuh Sistem Internasional (SI).

Apa yang Anda lakukan sewaktu melakukan pengukuran? Misalnya anda mengukur panjang meja belajar dengan menggunakan jengkal, dan mendapatkan bahwa panjang meja adalah 6 jengkal. Jadi, mengukur adalah membandingkan sesuatu yang diukur dengan sesuatu lain yang sejenis yang ditetapkan sebagai satuan. Dalam pengukuran di atas Anda telah mengambil jengkal sebagai satuan panjang.
Sebelum adanya standar internasional, hampir tiap negara menetapkan sistem satuannya sendiri. Penggunaan bermacam-macam satuan untuk suatu besaran ini menimbulkan kesukaran. Kesukaran pertama adalah diperlukannya bermacam-macam alat ukur yang sesuai dengan satuan yang digunakan. Kesukaran kedua adalah kerumitan konversi dari satu satuan ke satuan lainnya, misalnya dari jengkal ke kaki. Ini disebabkan tidak adanya keteraturan yang mengatur konversi satuan-satuan tersebut.
Akibat kesukaran yang ditimbulkan oleh penggunaan sistem satuan yang berbeda maka muncul gagasan untuk menggunakan hanya satu jenis satuan saja untuk besaran-besaran dalam ilmu pengetahuan alam dan teknologi. Suatu perjanjian internasional telah menetapkan satuan sistem internasional (Internasional System of Units) disingkat satuan SI. Satuan SI ini diambil dari sistem metrik yang telah digunakan di Perancis. Selain Sistem Internasional (SI), terdapat juga Sistem Satuan Britania (British System) yang juga sering digunakan dalam kehidupan sehari-hari.
SATUAN SISTEM INTERNASIONAL (SI)
Satuan pengukuran dalam Sistem Internasional (SI), dibedakan atas statis dan dinamis. Sistem dinamis terdiri dari dua jenis yaitu sistem satuan dinamis besar dan dinamis kecil. Sistem dinamis besar biasa disebut “MKS” atau “sistem praktis” atau “sistem Giorgie”, sedangkan sistem dinamis kecil biasa kita sebut “CGS” atau “sistem Gauss”.
Satuan Besaran Pokok (Sistem Internasional/SI)
Karena hanya ada tujuh besaran pokok maka hanya terdapat tujuh satuan pokok yang dapat anda dilihat pada tabel di bawah ini :
Besaran Pokok
Lambang
Satuan MKS dan
Singkatan
Satuan CGS dan Singkatan
Panjang
l (length)
Meter (m)
Centimeter (cm)
massa
m (mass)
Kilogram (Kg)
Gram (gr)
Waktu
t (time)
Detik / Sekon (s)
Sekon (s)
Suhu
T (Temperature)
Kelvin (K)
Kuat Arus
I
Ampere (A)
Jumlah Molekul
Mole (Mol)
Intensitas Cahaya
Candela (Cd)
Penetapan Satuan / Definisi Satuan
Penetapan satuan SI dilakukan oleh CGPM, yaitu suatu badan yang bernaung di bawah organisasi Internasional Timbangan dan Ukuran (OIPM-Organisation Internationale des Poids et Measures ). Tugas badan ini adalah mengadakan konferensi sedikitnya satu kali dalam enam tahun dan mengesahkan ketentuan baru dalam bidang metrologi dasar.
1. Meter
Definisi lama : Satu meter adalah 1.650.763,73 kali panjang gelombang cahaya merah jingga yang dipancarkan isotop krypton 86.
Definisi baru (yang digunakan saat ini) : satu meter adalah jarak yang ditempuh cahaya (dalam vakum) dalam selang waktu 1/299 792 458 sekon
2. Kilogram
Satu kilogram (Kg) adalah massa sebuah kilogram standar (silinder platina iridium) yang aslinya disimpan di lembaga Timbangan dan Ukuran Internasional (CGPM ke-1, 1899) di Serves, Perancis. (gambar kilogram standar)
3. Sekon / Detik
Satu sekon (s) adalah selang waktu yang diperlukan oleh atom sesium-133 untuk melakukan getaran sebanyak 9 192 631 770 kali dalam transisi antara dua tingkat energi di tingkat energi dasarnya (CGPM ke-13; 1967)
4. Kelvin
Satu Kelvin (K) adalah 1/273,16 kali suhu termodinamika titik tripel air (CGPM ke-13, 1967). Dengan demikian, suhu termodinamika titik tripel air adalah 273,16 K. Titik tripel air adalah suhu dimana air murni berada dalam keadaan seimbang dengan es dan uap jenuhnya.
5. Ampere
Satu Ampere (A) adalah kuat arus tetap yang jika dialirkan melalui dua buah kawat yang sejajar dan sangat panjang, dengan tebal yang dapat diabaikan dan diletakkan pada jarak pisah 1 meter dalam vakum, menghasilkan gaya 2 X 10-7 newton pada setiap meter kawat.
6. Candela
Satu Candela (Cd) adalah intensitas cahaya suatu sumber cahaya yang memancarkan radiasi monokromatik pada frekuensi 540 X 1012hertz dengan intensitas radiasi sebesar 1/683 watt per steradian dalam arah tersebut (CGPM ke-16, 1979)
7. Mol
Satu mol zat terdiri atas 6,025 x 1023 buah partikel. ( 6,025 x 1023 disebut dengan bilangan avogadro ).
Satuan Besaran Turunan (Sistem Internasional/SI) 
Contoh satuan-satuan besaran turunan dapat anda lihat pada tabel di bawah ini. Penjelasan mengenai bagaimana memperoleh satuan Besaran Turunan akan dipelajari pada pembahasan tentang Dimensi Besaran.
Besaran Turunan
Lambang
Satuan dan Singkatan
Luas
L
Meter kuadrat (m2)
Volume
V (volume)
Meter kubik (m3)
Kecepatan
v (velocity)
“Meter per sekon” (m/s)
Percepatan
A (acceleration)
Meter “per sekon kuadrat” (m/s2)
Massa Jenis
2.        KONVERSI SATUAN
Konversi = Mengubah
Besaran apapun yang kita ukur, seperti panjang, massa atau kecepatan, terdiri dari angka dan satuan. Sering kita diberikan besaran dalam satuan tertentu dan kita kita ingin menyatakannya dalam satuan lain. Misalnya kita mengetahui jarak dua kota dalam satuan kilometer dan kita ingin mengetahui berapa jaraknya dalam satuan meter. Demikian pula dengan massa benda. Misalnya kita mengukur berat badan kita dalam satuan kg dan kita ingin mengetahui berat badan kita dalam satuan ons atau pon. Untuk itu kita harus mengkonversi satuan tersebut. Konversi berarti mengubah. Untuk mengkonversi satuan, terlebih dahulu harus diketahui beberapa hal yang penting, antara lain awalan-awalan metrik yang digunakan dalam satuan dan faktor konversi.
Konversi Satuan SI
Kelebihan sistem Satuan Internasional (SI) adalah kemudahan dalam pemakaiannya karena menggunakan sistem desimal (kelipatan 10) dan hanya ada satu satuan pokok untuk setiap besaran dengan penambahan awalan untuk satuan yang lebih besar atau lebih kecil. Misalnya, 1 centimeter = 0,01 meter atau 1 kilogram sama dengan 1000 gram. Untuk kemudahan mengubah suatu satuan ke satuan lain dapat dilakukan dengan menggunakan bantuan tangga konversi seperti yang terlihat pada gambar di bawah ini.
Cara mengkonversi satuan-satuan SI dengan tangga konversi :
Pertama, Letakkan satuan asal yang akan dikonversi dan satuan baru yang akan dicari pada tangga sesuai dengan urutan tangga konversi
Kedua, Hitung jumlah langka yang harus ditempuh dari satuan asal ke satuan baru
a. Jika satuan baru berada di bawah satuan asal ( menuruni tangga ), maka :
  • Setiap turun satu tangga, bilangan asal dikali 10
  • Setiap turun dua tangga, bilangan asal dikali 10
  • Setiap turun tiga tangga, bilangan asal dikali 1000, dan seterusnya
b. Jika satuan baru berada di atas satuan asal ( menaiki tangga ), maka :
  • Setiap naik satu tangga, bilangan asal dibagi 10
  • Setiap naik dua tangga, bilangan asal dibagi 100
  • Setiap naik tiga tangga, bilangan asal dibagi 1000, dan seterusnya
Contoh soal :
Ubahlah satuan berikut ini :
10 km = …. cm ?
Perhatikan Tangga Konversi Satuan Panjang.
Dari km (kilometer) ke cm (centimeter), kita menuruni 5 anak tangga. Dengan demikian kita mengalikannya dengan 100.000 (5 nol). Jadi 10 km = 10 x 100000 = 1000.000 cm
7000 m = ….. km ?
Perhatikan Tangga Konversi Satuan Panjang.
Dari m (meter) ke km (kilometer), kita menaiki 3 anak tangga. Dengan demikian kita membaginya dengan 1000 (3 nol). Jadi 7000 km = 7000 : 1000 = 7 km
300 gr = ….. kg ?
Perhatikan Tangga Konversi Satuan massa.
Dari gr (gram) ke kg (kilogram), kita menaiki 3 anak tangga. Dengan demikian kita membaginya dengan 1000 (3 nol). Jadi 300 gr = 300 : 1000 = 0,3 kg
5 kg = …. mg ?
Perhatikan Tangga Konversi Satuan massa.
Dari kg (kilogram) ke mg (miligram), kita menuruni 6 anak tangga. Dengan demikian kita mengalikannya dengan 1.000.000 (6 nol). Jadi 5 kg = 5 x 1000.000 = 5.000.000 mg
Rubahlah satuan-satuan di bawah ini, ditulis dalam bentuk baku.
a. 27,5 m3 = ……………………………….. cm3
b. 0,5.10-4 kg = ……………………………….. mg
c. 10 m/det = ……………………………….. km/jam
d. 72 km/jam = ……………………………….. m/det
e. 2,7 newton = ……………………………….. dyne
f. 5,8 joule = ……………………………….. erg
g. 0,2.10-2 g/cm3 = ……………………………….. kg/m3
h. 3.105 kg/m3 = ……………………………….. g/cm3
i. 2,5.103 N/m2 = ……………………………….. dyne/cm2
j. 7,9 dyne/cm3 = ……………………………….. N/m3
k. 0,7 . 10-8 m = ……………………………….. mikro
l. 1000 kilo joule = ……………………… mikro joule = ……………………… Giga Joule
 
3.        BESARAN POKOK DAN BESARAN TURUNAN
Besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll. Warna, indah, cantik, bukan merupakan besaran karena tidak dapat diukur dan dinyatakan dengan angka. Besaran dibagi menjadi dua yaitu besaran pokok dan besaran turunan.
BESARAN POKOK
Besaran Pokok adalah besaran yang satuannya telah ditetapkan terlebih dahulu dan tidak diturunkan dari besaran lain. Ada tujuh besaran pokok dalam sistem Satuan Internasional yaitu Panjang, Massa, Waktu, Suhu, Kuat Arus, Jumlah molekul, Intensitas Cahaya.
Panjang adalah dimensi suatu benda yang menyatakan jarak antar ujung. Panjang dapat dibagi menjadi tinggi, yaitu jarak vertikal, serta lebar, yaitu jarak dari satu sisi ke sisi yang lain, diukur pada sudut tegak lurus terhadap panjang benda. Dalam ilmu fisika dan teknik, kata “panjang” biasanya digunakan secara sinonim dengan “jarak”, dengan simbol “l” atau “L” (singkatan dari bahasa Inggris length).
Massa adalah sifat fisika dari suatu benda, yang secara umum dapat digunakan untuk mengukur banyaknya materi yang terdapat dalam suatu benda. Massa merupakan konsep utama dalam mekanika klasik dan subyek lain yang berhubungan.
Waktu menurut Kamus Besar Bahasa Indonesia (1997) adalah seluruh rangkaian saat ketika proses, perbuatan atau keadaan berada atau berlangsung. Dalam hal ini, skala waktu merupakan interval antara dua buah keadaan/kejadian, atau bisa merupakan lama berlangsungnya suatu kejadian. Tiap masyarakat memilki pandangan yang relatif berbeda tentang waktu yang mereka jalani. Sebagai contoh: masyarakat Barat melihat waktu sebagai sebuah garis lurus (linier). Konsep garis lurus tentang waktu diikuti dengan terbentuknya konsep tentang urutan kejadian. Dengan kata lain sejarah manusia dilihat sebagai sebuah proses perjalanan dalam sebuah garis waktu sejak zaman dulu, zaman sekarang dan zaman yang akan datang. Berbeda dengan masyarakat Barat, masysrakat Hindu melihat waktu sebagai sebuah siklus yang terus berulang tanpa akhir.
Suhu menunjukkan derajat panas benda. Mudahnya, semakin tinggi suhu suatu benda, semakin panas benda tersebut. Secara mikroskopis, suhu menunjukkan energi yang dimiliki oleh suatu benda. Setiap atom dalam suatu benda masing-masing bergerak, baik itu dalam bentuk perpindahan maupun gerakan di tempat berupa getaran. Makin tingginya energi atom-atom penyusun benda, makin tinggi suhu benda tersebut.
Arus listrik adalah banyaknya muatan listrik yang mengalir tiap satuan waktu. Muatan listrik bisa mengalir melalui kabel atau penghantar listrik lainnya. Pada zaman dulu, Arus konvensional didefinisikan sebagai aliran muatan positif, sekalipun kita sekarang tahu bahwa arus listrik itu dihasilkan dari aliran elektron yang bermuatan negatif ke arah yang sebaliknya.
BESARAN TURUNAN
Besaran turunan adalah besaran yang satuannya diturunkan dari besaran pokok atau besaran yang didapat dari penggabungan besaran-besaran pokok. Contoh besaran turunan adalah Berat, Luas, Volume, Kecepatan, Percepatan, Massa Jenis, Berat jenis, Gaya, Usaha, Daya, Tekanan, Energi Kinetik, Energi Potensial, Momentum, Impuls, Momen inersia, dll. Dalam fisika, selain tujuh besaran pokok yang disebutkan di atas, lainnya merupakan besaran turunan. Besaran Turunan selengkapnya akan dipelajari pada masing-masing pokok bahasan dalam pelajaran fisika.
Untuk lebih memperjelas pengertian besaran turunan, perhatikan beberapa besaran turunan yang satuannya diturunkan dari satuan besaran pokok berikut ini.
Luas = panjang x lebar
 = besaran panjang x besaran panjang
 = m x m
 = m2
Volume = panjang x lebar x tinggi
 = besaran panjang x besaran panjang x besaran Panjang
 = m x m x m
 = m3
Kecepatan = jarak / waktu
 = besaran panjang / besaran waktu
 = m / s
Dimensi besaran diwakili dengan simbol, misalnya M, L, T yang mewakili massa (mass), panjang (length) dan waktu (time). Ada dua macam dimensi yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan panjang) dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua Besaran Turunan yang dinyatakan dalam Dimensi Primer. Contoh : Dimensi Gaya : M L T-2 atau dimensi Percepatan : L T-2
Catatan :
Semua besaran dalam mekanika dapat dinyatakan dengan tiga besaran pokok (Dimensi Primer) yaitu panjang, massa dan waktu. Sebagaimana terdapat Satuan Besaran Turunan yang diturunkan dari Satuan Besaran Pokok, demikian juga terdapat Dimensi Primer dan Dimensi Sekunder yang diturunkan dari Dimensi Primer.
Manfaat Dimensi dalam Fisika antara lain : (1) dapat digunakan untuk membuktikan dua besaran sama atau tidak. Dua besaran sama jika keduanya memiliki dimensi yang sama atau keduanya termasuk besaran vektor atau skalar, (2) dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar, (3) dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui.
Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.
ANALISIS DIMENSI
Analisis dimensi adalah cara yang sering dipakai dalam fisika, kimia dan teknik untuk memahami keadaan fisis yang melibatkan besaran yang berbeda-beda. Analisis dimensi selalu digunakan untuk memeriksa ketepatan penurunan persamaan. Misalnya, jika suatu besaran fisis memiliki satuan massa dibagi satuan volume namun persamaan hasil penurunan hanya memuat satuan massa, persamaan tersebut tidak tepat. Hanya besaran-besaran berdimensi sama yang dapat saling ditambahkan, dikurangkan atau disamakan. Jika besaran-besaran berbeda dimensi terdapat di dalam persamaan dan satu sama lain dibatasi tanda “+” atau “-” atau “=”, persamaan tersebut harus dikoreksi terlebih dahulu sebelum digunakan. Jika besaran-besaran berdimensi sama maupun berbeda dikalikan atau dibagi, dimensi besaran-besaran tersebut juga terkalikan atau terbagi. Jika besaran berdimensi dipangkatkan, dimensi besaran tersebut juga dipangkatkan.
Seringkali kita dapat menentukan bahwa suatu rumus salah hanya dengan melihat dimensi atau satuan dari kedua ruas persamaan. Sebagai contoh, ketika kita menggunakan rumus A= 2.Phi.r untuk menghitung luas. Dengan melihat dimensi kedua ruas persamaan, yaitu [A] = L2 dan [2.phi.r] = L kita dengan cepat dapat menyatakan bahwa rumus tersebut salah karena dimensi kedua ruasnya tidak sama. Tetapi perlu diingat, jika kedua ruas memiliki dimensi yang sama, itu tidak berarti bahwa rumus tersebut benar. Hal ini disebabkan pada rumus tersebut mungkin terdapat suatu angka atau konstanta yang tidak memiliki dimensi, misalnya Ek = 1/2 mv2 , di mana 1/2 tidak bisa diperoleh dari analisis dimensi.
Anda harus ingat karena dalam suatu persamaan mungkin muncul angka tanpa dimensi, maka angka tersebut diwakili dengan suatu konstanta tanpa dimensi, misalnya konstanta k.
4.        NOTASI ILMIAH
Pengukuran dalam fisika terbentang mulai dari ukuran partikel yang sangat kecil, seperti massa elektron, sampai dengan ukuran yang sangat besar, seperti massa bumi. Penulisan hasil pengukuran benda sangat besar, misalnya massa bumi kira-kira 6.000.000.000 000.000.000.000.000 kg atau hasil pengukuran partikel sangat kecil, misalnya massa sebuah elektron kira-kira 0,000.000.000.000.000.000.000.000.000.000.911 kg memerlukan tempat yang lebar dan sering salah dalam penulisannya. Untuk mengatasi masalah tersebut, kita dapat menggunakan notasi ilmiah atau notasi baku.
Dalam notasi ilmiah, hasil pengukuran dinyatakan sebagai : a, . . . . x 10n

di mana :
a adalah bilangan asli mulai dari 1 – 9
n disebut eksponen dan merupakan bilangan bulat dalam persamaan tersebut,
10n disebut orde besar
Contoh :
Massa bumi = 5,98 x1024
Massa elektron = 9,1 x 10-31
0,00000435 = 4,35 x 10-6
345000000 = 3,45×108
 
RANGKUMAN
PENGUKURAN
Ø  Besar suatu besaran fisik (misalnya panjang, waktu, gaya, dan energi) dinyatakan sebagai suatu bilangan yang diikuti dengan suatu satuan.
Ø  Satuan-satuan pokok Sistem Intemasional (SI) adalah meter (m), sekon (s), kilogram (kg), kelvin (K), ampere (A), mole (mol), dan kandela (cd). Setiap besaran fisik dapat dinyatakan dalam satuan-­satuan pokok ini.
Ø  Satuan-satuan dalam persamaan diperlukan seperti besaran aljabar lainnya.
Ø  Faktor konversi, yang selalu sama dengan 1, memberikan suatu metode yang praktis untuk mengubah satuan yang satu ke yang lain.
Ø  Bilangan yang sangat kecil dan sangat besar paling mudah ditulis dengan bilangan antara 1 dan 10 dikalikan dengan bilangan berpangkat dari 10. Cara penulisan ini disebut dengan notasi ilmiah. Jika mengalikan dua bilangan, maka eksponennya ditambahkan jika membagi, eksponennya dikurangkan. Jika suatu bilangan yang mengandung eksponen dipangkatkan lagi oleh suatu eksponen, maka eksponen-eksponennya dikalikan.
Ø  Jumlah angka signifikan dalam hasil pengalian atau pembagian tidak lebih besar dari jumlah angka signifikan terkecil dan faktor­-faktornya. Hasil penjumlahan atau pengurangan dua bilangan tidak akan mempunyai angka signifikan di luar tempat desimal terakhir di mana kedua bilangan asalnya mempunyai angka signifikan.
Ø  Suatu bilangan yang dibulatkan ke pangkat terdekat dari bilangan pokok 10 disebut orde magnitudo. Orde magnitudo suatu besaran seringkali dapat diperkirakan dengan menggunakan asumsi yang masuk akal dan dengan perhitungan sederhana.

Leave a Reply

Your email address will not be published. Required fields are marked *